注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

众里寻他千百度,名师成就满分路

AP 微积分 AP 计算机 腾飞的博客

 
 
 

日志

 
 
关于我

大学讲师,中国首批AP计算机教师,著有中国第一套,历经五年实践证明深受学生欢迎的成功的AP计算机双语教材,2013年以93%的满分率开创了中国AP计算机成功的先河,远远超出全美26.6%的满分率,为中国AP计算机教学树立了典范,并在同年加拿大计算机竞赛中勇夺桂冠,任教学生获哥伦比亚大学,麻省理工学院,卡耐基梅隆大学,宾夕法尼亚大学,康奈尔大学,西北大学等学校录取,远程学生遍及北京、长春、南京、重庆、广州、济南, 深圳、成都、费城,洛杉矶,加州,宾州,新罕布什尔州等地,希望借此平台为信息技术的发展做出贡献!

网易考拉推荐

归并排序 转载  

2012-02-04 21:54:23|  分类: 默认分类 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
归并排序算法以O(nlogn)最坏情形运行时间运行,而所使用的比较次数几乎是最优的。它可以用递归的形式实现,形式简洁易懂。但是需要注意的是当用递归形式时,如果数据较多,则开销很大,实用性很差,所以我们一般采用非递归的形式。我这里两种形式都给出。
      不管是递归还是非递归,归并排序算法中基本的操作是合并两个已经排序的数组。
递归形式:
template <class T>
void MSort(T a[], int left, int right)
{
      if (left < right)
      {
            int center = (left + right) / 2;
            MSort(a, left, center);
            MSort(a, center+1, right);
            Merge(a, left, center, right, right-left+1);
      }
}

template <class T>
void MergeSort(T a[], int n)
{
      MSort(a, 0, n-1);
}
///////////////////////////////////////////////////////////////////////
非递归形式:
算法介绍:先介绍三个变量beforeLen,afterLen和i的作用:
int beforeLen; //合并前序列的长度
int afterLen;//合并后序列的长度,合并后序列的长度是合并前的两倍
int i = 0;//开始合并时第一个序列的起始位置下标,每次都是从0开始
i,i+beforeLen-1,i+afterLen-1定义被合并的两个序列的边界。
算法的工作过程如下:
开始时,beforeLen被置为1,i被置为0。外部for循环的循环体每执行一次,都使beforeLen和afterLen加倍。内部的while循环执行序列的合并工作,他的循环体每执行一次,i都向前移动afterLen个位置。当n不是afterLen的倍数时,如果被合并序列的起始位置i,加上合并后序列的长度afterLen,超过输入数组的边界n,就结束内部循环;此时如果被合并序列的起始位置i,加上合并前序列的长度beforeLen,小于输入数组的边界n,还需要执行一次合并工作,把最后长度不足afterLen,但超过beforeLen的序列合并起来。这个工作由算法的语句Merge(a, i, i+beforeLen-1, n-1, n);完成。

template <class T>
void MergeSort(T a[], int n)
{
      int beforeLen; //合并前序列的长度
      int afterLen = 1;//合并后序列的长度
      
      for (beforeLen=1; afterLen<n; beforeLen=afterLen)
      {
            int i = 0;//开始合并时第一个序列的起始位置下标,每次都是从0开始
            afterLen = 2 * beforeLen; //合并后序列的长度是合并前的两倍
            
            while (i+afterLen < n)
            {
                  Merge(a, i, i+beforeLen-1, i+afterLen-1, afterLen);
                  i += afterLen;
            }
            
            if (i+beforeLen < n)
                  Merge(a, i, i+beforeLen-1, n-1, n);
      }
}
///////////////////////////////////////////////////////////
      上面两种算法都要用到下面的合并函数。
/*函数介绍:合并两个有序的子数组
输入:数组a[],下标left,center,right,元素个数n,a[left]~a[center]及a[center+1]~a[right]已经按非递减顺序排序。
输出:按非递减顺序排序的子数组a[left]~a[right]。
*/
template <class T>
void Merge(T a[], int left, int center, int right, int n)
{
      T *t = new T[n];//存放被排序的元素
      int i = left;
      int j = center + 1;
      int k = 0;

      while (i<=center && j<=right)
      {
            if (a[i] <= a[j])
                  t[k++] = a[i++];
            else
                  t[k++] = a[j++];
      }

      if (i == center+1)
      {
            while (j <= right)
                  t[k++] = a[j++];
      }
      else
      {
            while (i <= center)
                  t[k++] = a[i++];
      }
      //把t[]的元素复制回a[]
      for (i=left,k=0; i<=right; i++,k++)
            a[i] = t[k];

      delete []t;
}
  评论这张
 
阅读(71)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017